光ファイバのたわみ振動を用いた高速波長走査光源

井砂亮一 小山大介 中村健太郎 上羽貞行 東京工業大学

精密工学研究所

1 はじめに

レーザ光等の偏向走査を行う光スキャナには様々 な方式があるが、高周波数で大偏向角走査を行うの は難しい. そこで我々は、たわみ振動する光ファイ バを用いて,高周波走査可能な光スキャナを提案し, その偏向角について検討を行ってきた凹。この方式 では、振動による光ファイバ端部での変位と傾きの 効果以外に、振動応力による光ファイバ内部での屈 折率変調効果が加わり、42 kHz で±10.5°の偏向角 で出射光を走査可能であることを確認している.本 報では、本方式を応用した高速波長走査光源を実現 したことを報告する.

2 波長走査光源の構造と原理

提案する波長走査光源の構造を Fig. 1 に示す. Littrow 型の分光部と増幅媒体である半導体レーザ からなる外部共振器型半導体レーザ構造をとって いる。半導体レーザ素子の片側端面には無反射コー ティングが施されており、光ファイバと結合されて いる. 光ファイバ出力端からコリメート用レンズと 回折格子で構成される分光部に向かって光が出射す る. 光ファイバは偏波コントローラ (PC) 付きのシ ングルモード光ファイバとし、回折格子での回折効 率の大きい S 波を出射する. 回折格子は, 溝本数 600 lines/mm, ブレーズ角 28.41°のブレーズド・グ レーティングを用い、入射角と一次回折角が等しく なる Littrow 型配置となっている。回折格子では光の 波長に応じて回折角度が変わる。ここで、回折格子 への入射角度を変化させることにより、半導体レーザ へ戻る光の波長が変化する。半導体レーザでは、こ の戻り光の波長でレーザ発振し、発振光はもう一方 の端面から出射し、アイソレータを透過後、シングル モード光ファイバに出力される.

3 走 查 方 法

レンズに光を出射する光ファイバ先端部分を圧電 振動子を用いて片持ち梁モードでたわみ振動させ, 回折格子への入射光角を掃引し, レーザ側へ戻る光 の波長を変化させる。圧電振動子は,86 kHz 付近で 共振するステップホーン付きボルト締めランジュバ ン振動子 (BLT) を用い,ホーン先端を光ファイバに

Fig. 1 Experimental setup of the wavelength swept light source using the optical scanner based on bending vibration of the optical fiber.

Fig. 2 Spectrum shapes of the swept light source output.

接着している。この周波数で光ファイバも共振させ るために, Bernoulli-Euler の梁の横振動の共振周波 数の式 [2]

$$f_n = \frac{\left(\beta_n L\right)^2}{2\pi L^2} \sqrt{\frac{EI}{\rho A}} \tag{1}$$

を用いて光ファイバ長 L を 5 次モードで共振する 8.2 mm とした. なお, EI は曲げ剛さ, ρ は密度, A は断面積, $\beta_n L$ は周波数定数である. このとき, 半導 体レーザの出力について光スペクトラムアナライザ で光スペクトルの時間平均値を測定すると Fig. 2 と なった. 振動させないときの発振スペクトルも合わ せて示す。正弦波振動のためスペクトルの中央部分 の出力が小さく表示されている.

4 波長走査特性

4.1 レンズの曲率による掃引幅の変化

光ファイバの共振周波数 83.6 kHz で駆動したとき の振動子先端の振動変位に対する光ファイバ先端の 振動変位を LDV (laser Doppler velocimeter) を用い て測定した結果を Fig. 3 に示す. このときの半導体 レーザの出力を光スペアナで観測し、光ファイバ先

Fig. 3 Displacement of the fiber end vs displacement of the transducer at 83.6 kHz.

端変位に対する波長掃引幅を測定した結果を幾何光 学計算から見積もった値とともに Fig. 4 に示す. コ リメート用レンズとして直径の異なるボールレンズ (屈折率 1.77) と 20 倍の対物レンズを用いた場合に ついて測定を行なった、振動させない状態での発振 スペクトルの線幅と光出力を Table 1 に示す。どのレ ンズを用いたときも掃引幅は線幅の 60 倍程度で一定 であり、掃引幅と線幅はトレードオフの関係になっ ている。より曲率の小さなボールレンズを用いた方 が偏向角は大きくなり、掃引幅も大きくなるが、コリ メート性が悪くなるため発振線幅が広がり, 光出力 も小さくなった. 直径 1 mm のボールレンズを用い たときで、線幅 1.1 nm で 70 nm の掃引幅を得た. 今 回の測定では、振動子と光ファイバの共振周波数に ずれが生じており、光ファイバ先端で十分な変位が得 られなかった、共振周波数の調整により、より大き な掃引幅を得ることが可能であると考えられる.線 幅は光ファイバ端面かボールレンズに反射防止コー ティングをすることによって、より小さくできると 考えられる. また、従来得られていた振動応力によ る屈折率変調効果 四は小さかった. この点について は光ファイバの種類の影響などの検討が必要である.

4.2 発振波長の時間的変化

波長多重された光信号を波長ごとに異なる出力 ポートに導くアレイ導波路格子(AWG)を用いて波 長走査時における発振波長の時間的な変化を測定し た.0.8 nm 間隔で通過中心波長の異なる 32ch の出 力をもつ AWG に半導体レーザの出力光を入力し, 各出力ポートからの出射光を PD で受光し,オシロ スコープで観測した.PD の出力と圧電振動子への 印加電圧の時間位相を測定することにより,波長走 査光源の出射波長と時間の関係がわかる.9.57 kHz で 51.40, 29.24 nm を波長走査したときの測定結果 を Fig.5 に示す.図中の曲線は光スペアナで測定し た掃引幅を正弦波状に走査した場合の理論値である.

Fig. 4 Sweep span vs displacement of the fiber end.

Table 1 Comparison of line width and optical power.

		FWHM [nm]	Power [dBm]
	0.5 mm	2.2	-12.3
Ball	0.8 mm	1.5	-7.1
lens	1.0 mm	1.1	-4.9
	5.0 mm	0.36	0.2
Objective lens		0.24	5.1

Fig. 5 Time domain measurements of the wavelength sweep.

振動子を正弦波駆動させているが,出射波長も正弦 波状に時間掃引されているのがわかる.

5 まとめ

光ファイバのたわみ振動を用いた高速波長走査光 源を提案した。83.6 kHz で掃引幅 70 nm の波長走査 を実現した。

参考文献

- [1] R. Isago *et al.*, Jpn. J. Appl. Phys., **45**, 4773-4779, 2006.
- [2] K. F. Graff, "Wave Motion In Elastic Solids," Dover Publications, Chap. 3, 1991.