Measurement of the optical path length difference in an interferometer using a sinusoidally frequency-modulated light source

SHUMPEI SHIMADA,1 MAKOTO SHIZUKA,1 NEISEI HAYASHI,2 YOSUKE MIZUNO,1,* AND KENTARO NAKAMURA1
1Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
2Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
*Corresponding author: ymizuno@sonic.pi.titech.ac.jp

Received 22 January 2016; revised 10 March 2016; accepted 10 March 2016; posted 11 March 2016 (Doc. ID 258091); published 5 April 2016

We develop a technique for measuring the optical path length difference (OPLD) in an interferometer using a frequency-modulated light source. Compared with conventional methods, this technique offers a high sampling rate, high precision, and cost efficiency, and is capable of determining which of the two optical paths is longer. In addition, we show that this technique works properly even when the OPLD is significantly longer than the coherence length of the light source.

© 2016 Optical Society of America

OCIS codes: (060.4080) Modulation; (120.3180) Interferometry; (280.4788) Optical sensing and sensors.
http://dx.doi.org/10.1364/AO.55.002904

1. INTRODUCTION

For the past several decades, fundamental sensing techniques based on fiber-optic interferometry have been studied in order to measure a variety of physical parameters, such as reflectivity, loss, strain, temperature, displacement, vibration, pressure, humidity, profile, refractive index, concentration, pH, and rotation [1–6]. Some of the fiber-optic interferometers used in such measurements are composed of two light paths: a signal path, which contains an optical circulator, and a reference path. The optical path length difference (OPLD) between these two paths generally plays a significant role in the operation of the system. For instance, let’s consider using a technique known as optical correlation-domain reflectometry (OCDR) [7–16] in conjunction with a distributed reflectivity sensing system. If the zero-OPLD point is located in the fiber under test (FUT; i.e., the second port of the circulator), in theory the measurement cannot be performed. Another example is a technique known as Brillouin OCDR [17–19] in conjunction with a distributed strain and temperature sensing system. Even when the zero-OPLD point is located outside the FUT, unless the OPLD is carefully selected, the signal-to-noise ratio (SNR) of the measurement drastically deteriorates because of the overlap of the interference pattern on the Brillouin gain spectrum [19]. Thus, it is of crucial importance to measure and control the OPLD in an interferometer that includes an optical circulator.

Direct measurement of the OPLD is, however, sometimes difficult, because general interferometers contain various optical devices with unknown fiber lengths, such as optical amplifiers, external modulators, and kilometer-order delay lines. Therefore, several techniques for measuring the OPLD indirectly have been developed. One such technique works by exploiting the interval between the interference fringes observed using a spectrum analyzer [19–22]. This method is simple, though it does not allow us to judge which of the two paths is longer; furthermore, the visibility of the interference pattern becomes extremely low when the OPLD is significantly longer than the coherence length of the light source (or when the frequency resolution of the spectrum analyzer is not sufficiently high). Another method is based on the so-called time-of-flight technique [23–25], wherein optical pulses are simultaneously injected into the two paths, and the delay between the reflected pulses is subsequently measured. However, preparing such optical pulses can be costly, and this method does not provide any information concerning which of the paths is longer. In addition, numerous reflected pulses are generally utilized in order to improve the SNR, resulting in a relatively long measurement time (for instance, up to several minutes).

In order to mitigate the aforementioned drawbacks of the conventional techniques, in this work we develop an OPLD measurement technique for an interferometer that contains an optical circulator. By using a frequency-modulated light source, our technique can achieve a high sampling rate (corresponding to a short measurement time of ~10 ms), high precision, and cost efficiency. Moreover, we demonstrate that this technique can determine which of the two optical paths is longer, and that the OPLD can be correctly obtained even when it is significantly longer than the laser coherence length.
2. PRINCIPLE

The basic configuration of a fiber-optic interferometer that contains an optical circulator is schematically illustrated in Fig. 1, where an FUT is connected to the second port of the circulator. In order to calculate the OPLD between the signal and reference paths, we exploit one of the useful techniques for distributed reflectivity measurements—namely, OCDR [9–16]—by using a synthesized optical coherence function (SOCF) [14]. This system operates based on optical correlation control by the frequency modulation of laser output. The methods involved in frequency modulation can be classified into two categories: sinusoidal modulation [9–11] and stepwise modulation [12–14], which includes the use of optical frequency combs [15,16]; the former method is reported to be more cost efficient [9–11].

In a standard SOCF-OCDR system based on sinusoidal modulation [9–11], optical heterodyne detection using an acousto-optic modulator (AOM) is performed in order to shift the Fresnel spectrum by several tens of megahertz, thereby avoiding the overlap of low-frequency noise from the electrical devices. However, we have recently succeeded in excluding the optical heterodyne detection from the measurement process (i.e., eliminating the need for an AOM) by exploiting the foot of the Fresnel spectrum [26]. This results in electrical signal processing in the frequency range near dc (up to several megahertz) and, furthermore, reduces the cost of the relevant devices. High-speed operation has also been demonstrated by tracking a moving reflection point.

In an SOCF-OCDR system (with or without the use of an AOM), the optical frequency of the laser output is sinusoidally modulated at \(f_m \), thereby generating periodical correlation peaks along an FUT [14]. The measurement range \(d_m \) is determined by the interval between the correlation peaks, which is inversely proportional to \(f_m \) as follows:

\[
D = \frac{c}{2nf_m}, \tag{1}
\]

where \(c \) is the velocity of light in a vacuum and \(n \) is the refractive index of the fiber core. By sweeping \(f_m \), the correlation peak, which can be regarded as the sensing position, can be scanned along the FUT in order to acquire the reflectivity distribution. The spatial resolution of the system is given by [27]

\[
\Delta x \approx \frac{0.76c}{\pi n \Delta f}, \tag{2}
\]

where \(\Delta f \) is the modulation amplitude of the optical frequency.

Here, we develop a new method of calculating the OPLD between the signal and reference paths by using the operating principle of SOCF-OCDR. The zeroth-order correlation peak is always located at a zero-OPLD point, the location of which is fixed regardless of the modulation frequency \(f_m \) (Fig. 2). When the neighboring first-order correlation peak is located at the FUT end, where optical reflectivity is high due to Fresnel reflection, the OPLD can be calculated as the product of the core’s refractive index \(n \) and twice the correlation peak interval [i.e., the measurement range \(d_m \) given by Eq. (1)]. In general, when neighboring correlation peaks are located at the FUT end, the difference in their \(f_m \) values (denoted by \(\Delta f_m \)) is the same as the \(f_m \) value when the first-order correlation peak is located at the FUT end, irrespective of their peak orders. Therefore, by acquiring the reflectivity (or reflection power) as a function of \(f_m \) and obtaining \(\Delta f_m \) from an arbitrary set of two neighboring reflectivity peaks (corresponding to Fresnel reflection at the FUT end), the OPLD can be calculated as follows:

\[
\text{OPLD} = \frac{c}{\Delta f_m}. \tag{3}
\]

3. EXPERIMENTAL SETUP

Figure 3 depicts the experimental setup, which represents an AOM-free SOCF-OCDR system. It contains an optical circulator in the signal path; moreover, several dummy devices are employed in order to demonstrate that this method is applicable to complicated interferometers. A laser diode with a wavelength of 1550 nm and a linewidth of \(\sim 1 \) MHz (and thus a coherence length of \(\sim 200 \) m) was used as a light source. The driving current of the laser was directly modulated with a bias of 80 mA. The laser output was amplified to 18 dBm using an erbium-doped fiber amplifier (EDFA) and was injected into the FUT. Both the reflected light and the reference light were also amplified to 3 dBm using EDFAs. Polarization controllers (PCs), which were used to adjust the polarization states, were inserted in both optical paths. Various lengths of delay lines were inserted in each path in order to adjust the OPLD. The modulation amplitude \(\Delta f \) was fixed at 0.75 GHz, which corresponds to a nominal spatial resolution of 66 mm [see Eq. (2)]. For AOM-free operation, a 2 MHz component of the Fresnel reflection spectrum [output of a photodiode (PD)] observed using an electrical spectrum analyzer (ESA) was selectively acquired with an oscilloscope (OSC) in order to maximize the SNR [26]. The resolution bandwidth (RBW) and

![Fig. 1. Basic configuration of a fiber-optic interferometer that contains an optical circulator in the signal path. ESA, electrical spectrum analyzer; FUT, fiber under test; PD, photodiode.](image1)

![Fig. 2. Calculation principle of the optical path length difference (OPLD).](image2)
The video bandwidth (VBW) of the ESA were set to 300 and 1 kHz, respectively. Data averaging was performed 100 times on the OSC (unless otherwise stated) in order to secure a high SNR, corresponding to a total measurement time of \(\sim 1\) s (10 ms for one sampling).

4. EXPERIMENTAL RESULTS

The first demonstration was performed for a signal path that was shorter than the reference path by \(\sim 50\) m. Figure 4(a) shows the reflection power dependence on the modulation frequency \(f_m\) in the range from 3 to 15 MHz. Two sets of peaks, each of which consisted of one small and one large peak, were observed. Using the large peaks corresponding to the Fresnel reflection at the FUT end, the frequency difference \(\Delta f_m\) was calculated to be 6.142 MHz, which agrees with the \(f_m\) value of the large peak at the lower frequency. This is because the set of peaks at the lower frequency corresponds to the first-order correlation peak. By substituting the \(\Delta f_m\) value into Eq. (3), the OPLD was calculated to be 48.84 m. (The validity of this value is discussed below.)

The smaller peaks correspond to the reflection from the circulator. In general, when the signal path is shorter than the reference path, as \(f_m\) increases, the correlation peaks move from proximal (circulator) to distal (FUT end) positions, resulting in the appearance of the small peak followed by the appearance of the large peak. Thus, using the order in which the small and large peaks appear within each set of peaks, we can ascertain which of the two paths is longer; this logical procedure is (to our knowledge) unique to our method.

The calculated value of the OPLD (48.84 m) was then validated by measuring the same OPLD using a standard technique based on an interference pattern, which is shown in Fig. 4(b). The RBW and VBW of the ESA were set to 10 and 0.1 kHz, respectively. The average period of the interference pattern \(\Delta f_p\) (calculated using multiple peaks/dips) was 6.135 MHz; this corresponds to an OPLD of 48.89 m \((= c/\Delta f_p)\), thereby indicating impressive agreement between the two methods. Because the widths of the peaks in Fig. 4(a) are narrower than those in Fig. 4(b), the OCDM-based method provides higher precision when a simple fringe-counting technique is used.

Subsequently, the same measurements were performed for a signal path that was longer than the reference path by \(\sim 50\) m. Figure 5(a) shows the reflection power dependence on \(f_m\). The frequency difference \(\Delta f_m\) was 5.666 MHz, which corresponds to an OPLD of 52.95 m; this was verified by the interference pattern in Fig. 5(b) with a \(\Delta f_p\) value of 5.680 MHz, which corresponds to an OPLD of 52.82 m. As \(f_m\) increases, the large peak appears first and is followed by the small peak. This order is opposite to that in Fig. 4(a), which indicates that the signal path is longer than the reference path in this case.

We also measured the OPLD for a signal path that was shorter than the reference path by \(\sim 1\) km, which is longer than the coherence length of the laser \((\sim 200\) m). From the reflection power dependence on \(f_m\) [Fig. 6(a)], \(\Delta f_m\) was calculated to be 210 kHz, which corresponds to an OPLD of 977 m. From the interference pattern [Fig. 6(b)], \(\Delta f_p\) was evaluated to be 211 kHz, which corresponds to an OPLD of 974 m. However, the visibility of the pattern was so low that precise measurement was relatively difficult.

Additionally, we performed the same measurements for a signal path that was shorter than the reference path by \(\sim 15\) km, which is significantly longer than the laser coherence length. The reflection power dependence on \(f_m\) was obtained [Fig. 7(a)], and \(\Delta f_m\) was calculated to be 20 kHz, which corresponds to an OPLD of 14.78 km. However, the interference

Fig. 3. Schematic setup for experimental demonstration. EDFA, erbium-doped fiber amplifier; FG, function generator; OSC, oscilloscope; PC, polarization controller.

Fig. 4. (a) Reflection power dependence on the modulation frequency \(f_m\) (MHz) (b) Interference pattern measured for a signal path that is shorter than the reference path by \(\sim 50\) m.

Fig. 5. (a) Reflection power dependence on the modulation frequency \(f_m\) (b) Interference pattern measured for a signal path that is longer than the reference path by \(\sim 50\) m.
pattern was not observed, as shown in Fig. 7(b). The ability to measure an OPLD that is significantly longer than the coherence length of the laser is one of the important advantages of this method. (It is worth noting that SOCF-OCDR has been shown to possess a measurement range much longer than the laser coherence length [28].)

Finally, the averaging effect was evaluated using the data obtained for a signal path that was shorter than the reference path by ~15 km.

5. CONCLUSION

Based on the principle of the AOM-free SOCF-OCDR, a technique for measuring the OPLD in an interferometer was developed. We demonstrated its high-speed operation, high precision, and, most importantly, its capability of determining which of the two optical paths is longer. We also experimentally demonstrated that this technique works properly even when the OPLD is significantly longer than the laser coherence length. We believe that this technique will serve as a promising candidate for implementing OPLD measurement systems in future studies.

Funding. Japan Society for the Promotion of Science (JSPS) (25007652, 25709032, 26630180).

REFERENCES